pasar.pts-ptn.net Layanan Informasi 17 Jam
Telp/Fax : 021-8762002, 8762003, 8762004, 87912360
HP/SMS : 081 1110 4824 27, 0812 9526 2009, 08523 1234 000, 0815 145 78119
WhatsApp : 0817 0816 486, 0812 9526 2009, 0815 145 78119
email : _Hubungi Kami__ silahkan klik
Chatting dengan Staf :
ggkarir.com
ggiklan.com
Pilih Bahasa :   ID   EN   Permintaan Katalog / Brosur (GRATIS via POS)   Kelas Karyawan   Reguler
Jaringan WebsiteEnsiklopedia DuniaManual / TutorialManual / TutorialGilland GroupEkonomiMySQLInternetForum Internet, Komputer

   
Cari  
    Informatika Komputer

    Sebelumnya  (Comparison of mobile operating ...) (Comparison of network diagram ...)  Berikutnya    

Perbandingan -- mobile phone standards

A comparison of mobile phone standards can be done in many ways.

Contents

Issues

Global System for Mobile Communications (GSM, around 80–85% market share) and IS-95 (around 10–15% market share) were the two most prevalent 2G mobile communication technologies in 2007.[1] In 3G, the most prevalent technology was UMTS with CDMA-2000 in close contention.

All radio access technologies have to solve the same problems: to divide the finite RF spectrum among multiple users as efficiently as possible. GSM uses TDMA and FDMA for user and cell separation. UMTS, IS-95 and CDMA-2000 use CDMA. WIMAX and LTE use OFDM.

  • Time-division multiple access (TDMA) provides multiuser access by chopping up the channel into sequential time slices. Each user of the channel takes turns to transmit and receive signals. In reality, only one person is actually using the channel at a specific moment. This is analogous to time-sharing on a large computer server.
  • Frequency-division multiple access (FDMA) provides multiuser access by separating the used frequencies. This is used in GSM to separate cells, which then use TDMA to separate users within the cell.
  • Code-division multiple access (CDMA) This uses a digital modulation called spread spectrum which spreads the voice data over a very wide channel in pseudorandom fashion using a user or cell specific pseudorandom code. The receiver undoes the randomization to collect the bits together and produce the original data. As the codes are pseudorandom and selected in such a way as to cause minimal interference to one another, multiple users can talk at the same time and multiple cells can share the same frequency. This causes an added signal noise forcing all users to use more power, which in exchange decreases cell range and battery life.
  • Orthogonal Frequency Division Multiple Access (OFDMA) uses bundling of multiple small frequency bands that are orthogonal to one another to provide for separation of users. The users are multiplexed in the frequency domain by allocating specific sub-bands to individual users. This is often enhanced by also performing TDMA and changing the allocation periodically so that different users get different sub-bands at different times.

In theory, CDMA, TDMA and FDMA have exactly the same spectral efficiency but practically, each has its own challenges – power control in the case of CDMA, timing in the case of TDMA, and frequency generation/filtering in the case of FDMA.

For a classic example for understanding the fundamental difference of TDMA and CDMA imagine a cocktail party, where couples are talking to each other in a single room. The room represents the available bandwidth:

TDMA: A speaker takes turns talking to a listener. The speaker talks for a short time and then stops to let another couple talk. There is never more than one speaker talking in the room, no one has to worry about two conversations mixing. The drawback is that it limits the practical number of discussions in the room (bandwidth wise).
CDMA: any speaker can talk at any time; however each uses a different language. Each listener can only understand the language of their partner. As more and more couples talk, the background noise (representing the noise floor) gets louder, but because of the difference in languages, conversations do not mix. The drawback is that at some point, one cannot talk any louder. After this if the noise still rises (more people join the party/cell) the listener cannot make out what the talker is talking about without coming closer to the talker. In effect, CDMA cell coverage decreases as the number of active users increases. This is called cell breathing.

Comparison table

FeatureNMTGSMUMTS (3GSM)IS-95 (CDMA one)IS-2000 (CDMA 2000)
TechnologyFDMATDMA and FDMAW-CDMACDMACDMA
Generation1G2G3G2G3G
EncodingAnalogDigitalDigitalDigitalDigital
Year of First Use19811991200119952000 / 2002
RoamingNordics and several other European countriesWorldwide, all countries except Japan and South KoreaWorldwideLimitedLimited
Handset interoperabilityNoneSIM cardSIM cardNoneRUIM (rarely used)
Common InterferenceNoneSome electronics, e.g. amplifiersNoneNoneNone
Signal quality/coverage areaGood coverage due to low frequenciesGood coverage indoors on 850/900 MHz. Repeaters possible. 35 km hard limit.Smaller cells and lower indoors coverage on 2100 MHz; equivalent coverage indoors and superior range to GSM on 850/900 MHz.Unlimited cell size, low transmitter power permits large cellsUnlimited cell size, low transmitter power permits large cells
Frequency utilization/Call densityVery low density0.2 MHz = 8 timeslots. Each timeslot can hold up to 2 calls (4 calls with VAMOS) through interleaving.5 MHz = 2 Mbit/s. 42Mbit/s for HSPA+. Each call uses 1.8-12 kbit/s depending on chosen quality and audio complexity.Lower than CDMA-2000?1.228  MHz = 3Mbit/s
HandoffHardHardSoftSoftSoft
Voice and Data at the same timeNoYes GPRS Class AYes[2]NoNo EVDO / Yes SVDO[3]

Strengths and Weaknesses of IS-95 and GSM[4]

Advantages of GSM

  • Less signal deterioration inside buildings.
  • Ability to use repeaters.
  • Talktime is generally higher in GSM phones due to the pulse nature of transmission.
  • The availability of Subscriber Identity Modules allows users to switch networks and handsets at will, aside from a subsidy lock.
  • GSM covers virtually all parts of the world so international roaming is not a problem.
  • The much bigger number of subscribers globally creates a better network effect for GSM handset makers, carriers and end users.

Disadvantages of GSM

  • Interferes with some electronics, especially certain audio amplifiers.
  • Intellectual property is concentrated among a few industry participants, creating barriers to entry for new entrants and limiting competition among phone manufacturers. Situation is however worse in CDMA-based systems like IS-95, where Qualcomm is the major IP holder.[citation needed]
  • GSM has a fixed maximum cell site range of 120 km,[5] which is imposed by technical limitations.[6] This is expanded from the old limit of 35 km.

Advantages of IS-95

  • Capacity is IS-95's biggest asset; it can accommodate more users per MHz of bandwidth than any other technology.
  • Has no built-in limit to the number of concurrent users.
  • Uses precise clocks that do not limit the distance a tower can cover.[7]
  • Consumes less power and covers large areas so cell size in IS-95 is larger.
  • Able to produce a reasonable call with lower signal (cell phone reception) levels.
  • Uses soft handoff, reducing the likelihood of dropped calls.
  • IS-95's variable rate voice coders reduce the rate being transmitted when speaker is not talking, which allows the channel to be packed more efficiently.
  • Has a well-defined path to higher data rates.

Disadvantages of IS-95

  • Most technologies are patented and must be licensed from Qualcomm.
  • Breathing of base stations, where coverage area shrinks under load. As the number of subscribers using a particular site goes up, the range of that site goes down.
  • Because IS-95 towers interfere with each other, they are normally installed on much shorter towers. Because of this, IS-95 may not perform well in hilly terrain.
  • IS-95 covers a smaller portion of the world, and IS-95 phones are generally unable to roam internationally.
  • Manufacturers are often hesitant to release IS-95 devices due to the smaller market, so features are sometimes late in coming to IS-95 devices.
  • Even barring subsidy locks, CDMA phones are linked by ESN to a specific network, thus phones are typically not portable across providers.

Development of the Market Share of Mobile Standards

This graphic compares the market shares of the different mobile standards.

Cellphone subscribers by technology (left Y axis) and total number of subscribers globally (right Y axis)

In a fast growing market, GSM/3GSM (red) grows faster than the market and is gaining market share, the CDMA family (blue) grows at about the same rate as the market, while other technologies (grey) are being phased out.

Perbandingan -- wireless Internet standards

As a reference, a comparison of mobile and non-mobile wireless Internet standards follows.

Perbandingan -- mobile Internet access methods
Common
Name
FamilyPrimary UseRadio TechDownstream
(Mbit/s)
Upstream
(Mbit/s)
Notes
HSPA+3GPPUsed in 4GCDMA/FDD
MIMO
21
42
84
672
5.8
11.5
22
168
HSPA+ is widely deployed. Revision 11 of the 3GPP states that HSPA+ is expected to have a throughput capacity of 672 Mbit/s.
LTE3GPPGeneral 4GOFDMA/MIMO/SC-FDMA100 Cat3
150 Cat4
300 Cat5
(in 20 MHz FDD) [8]
50 Cat3/4
75 Cat5
(in 20 MHz FDD)[8]
LTE-Advanced update expected to offer peak rates up to 1 Gbit/s fixed speeds and 100 Mb/s to mobile users.
WiMax rel 1802.16WirelessMANMIMO-SOFDMA37 (10 MHz TDD)17 (10 MHz TDD)With 2x2 MIMO.[9]
WiMax rel 1.5802.16-2009WirelessMANMIMO-SOFDMA83 (20 MHz TDD)
141 (2x20 MHz FDD)
46 (20 MHz TDD)
138 (2x20 MHz FDD)
With 2x2 MIMO.Enhanced with 20 MHz channels in 802.16-2009[9]
WiMAX rel 2802.16mWirelessMANMIMO-SOFDMA2x2 MIMO
110 (20 MHz TDD)
183 (2x20 MHz FDD)
4x4 MIMO
219 (20 MHz TDD)
365 (2x20 MHz FDD)
2x2 MIMO
70 (20 MHz TDD)
188 (2x20 MHz FDD)
4x4 MIMO
140 (20 MHz TDD)
376 (2x20 MHz FDD)
Also, low mobility users can aggregate multiple channels to get a download throughput of up to 1 Gbit/s[9]
Flash-OFDMFlash-OFDMMobile Internet
mobility up to 200 mph (350 km/h)
Flash-OFDM5.3
10.6
15.9
1.8
3.6
5.4
Mobile range 30 km (18 miles)
extended range 55 km (34 miles)
HIPERMANHIPERMANMobile InternetOFDM56.9 
Wi-Fi802.11
(11n)
Mobile InternetOFDM/MIMO288.8 (using 4x4 configuration in 20 MHz bandwidth) or 600 (using 4x4 configuration in 40 MHz bandwidth)

Antenna, RF front end enhancements and minor protocol timer tweaks have helped deploy long range P2P networks compromising on radial coverage, throughput and/or spectra efficiency (310 km & 382 km)

iBurst802.20Mobile InternetHC-SDMA/TDD/MIMO9536Cell Radius: 3–12 km
Speed: 250 km/h
Spectral Efficiency: 13 bits/s/Hz/cell
Spectrum Reuse Factor: "1"
EDGE EvolutionGSMMobile InternetTDMA/FDD1.60.53GPP Release 7
UMTS W-CDMA
HSDPA+HSUPA
UMTS/3GSMGeneral 3GCDMA/FDD

CDMA/FDD/MIMO
0.384
14.4
0.384
5.76
HSDPA is widely deployed. Typical downlink rates today 2 Mbit/s, ~200 kbit/s uplink; HSPA+ downlink up to 56 Mbit/s.
UMTS-TDDUMTS/3GSMMobile InternetCDMA/TDD16Reported speeds according to IPWireless using 16QAM modulation similar to HSDPA+HSUPA
EV-DO Rel. 0
EV-DO Rev.A
EV-DO Rev.B
CDMA2000Mobile InternetCDMA/FDD2.45
3.1
4.9xN
0.15
1.8
1.8xN
Rev B note: N is the number of 1.25 MHz chunks of spectrum used. EV-DO is not designed for voice, and requires a fallback to 1xRTT when a voice call is placed or received.

Notes: All speeds are theoretical maximums and will vary by a number of factors, including the use of external antennae, distance from the tower and the ground speed (e.g. communications on a train may be poorer than when standing still). Usually the bandwidth is shared between several terminals. The performance of each technology is determined by a number of constraints, including the spectral efficiency of the technology, the cell sizes used, and the amount of spectrum available. For more information, see Perbandingan -- wireless data standards.

For more comparison tables, see bit rate progress trends, comparison of mobile phone standards, spectral efficiency comparison table and OFDM system comparison table.

See also

  • Perbandingan -- wireless data standards
  • Spectral efficiency comparison table
  • SMS - contain the content of its standardization

References

  1. ^ "Subscriber statistics end Q1 2007". Archived from the original on 2007-09-27. Retrieved 2007-09-22. 
  2. ^ UMTS/HSPA (3G) Mobile Broadband - Wireless from AT&T
  3. ^ CDMA Development Group Announces 'SVDO': Handle Calls and Data at same time
  4. ^ "IS-95 (CDMA) and GSM(TDMA)". Retrieved 2011-02-03. 
  5. ^ http://www.allbusiness.com/electronics/computer-electronics-manufacturing/6838169-1.html
  6. ^ http://www.arcx.com/sites/faq.htm
  7. ^ Frequently Asked PCS Questions
  8. ^ a b "LTE". 3GPP web site. 2009. Retrieved August 20, 2011. 
  9. ^ a b c "WiMAX and the IEEE 802.16m Air Interface Standard". WiMax Forum. 4 April 2010. Retrieved 2012-02-07. 
    Sebelumnya  (Comparison of mobile operating ...) (Comparison of network diagram ...)  Berikutnya    





Tags: Comparison of mobile phone standards, Informatika Komputer, 464, Perbandingan mobile phone standards A comparison of mobile phone standards can be done in many ways, Contents Issues 2 Comparison table 3 Strengths and Weaknesses of IS 95 and GSM [ 4 ] 3.1 Advantages of GSM 3.2 Disadvantages of GSM 3.3 Advantages of IS 95 3.4 Disadvantages of IS 95 4 Development of the Market Share of Mobile Standards 5 Perbandingan wireless Internet standards 6 See also 7 Ref, Comparison of mobile phone standards, Bahasa Indonesia, Contoh Instruksi, Tutorial, Referensi, Buku, Petunjuk pasar, pts-ptn.net
 Bursa Karir
 Beragam Perdebatan
 Kuliah Online / Daring di 168 PTS Terbaik
 Pendaftaran Online

 Program Kuliah Paralel
 Try Out Online Gratis
 Waktu Shalat
 Quran Online
 Buku Tutorial
 Tips & Trik Psikotes
 Referensi Bebas
 Berbagai Pariwara
 Permintaan Beasiswa Pendidikan
 Download Brosur
 Kelas Gratis
 Program Perkuliahan Lanjutan
 Program S2 (Pascasarjana, Magister)
 Perkuliahan Reguler
Manfaat Pakcoy (Sawi Daging)

Penyemaian biji / benih Anggur, Buah-buahan yang mengandung Lemak Tunggal, dsb.

Permintaan Katalog
(GRATIS dikirim via POS)
Nama Lengkap

Alamat Lengkap Penerima

Provinsi & Kota/Kabupaten

Kode Pos

Email (tidak wajib)

⛭ harus diisi lengkap & jelas
Atau kirimkan nama dan
alamat lengkap via SMS ke HP:
08523 1234 000


Brosur Gratis
Brosur Kelas Karyawan
Gabungan Seluruh Wilayah Indonesia

PDF (11,2 MB)ZIP (8,8 MB)
Image/JPG (36,2 MB)
Brosur Kelas Karyawan
JABODETABEK

PDF (5,5 MB)ZIP (4,4 MB)
Image/JPG (13,2 MB)
Brosur Kelas Karyawan
DIY,JATENG,JATIM & BALI

PDF (4,4 MB)ZIP (3,5 MB)
Image/JPG (14,5 MB)
Brosur Kelas Karyawan
JAWA BARAT

PDF (2,8 MB)ZIP (2,2 MB)
Image/JPG (7,1 MB)
Brosur Kelas Karyawan
SULAWESI

PDF (1,9 MB)ZIP (1,5 MB)
Image/JPG (5,6 MB)
Brosur Kelas Karyawan
SUMATERA & BATAM

PDF (2,2 MB)ZIP (1,7 MB)
Image/JPG (6,5 MB)
Brosur Reguler
PDF (4,1 Mb)ZIP (8,4 Mb)
Kalender NKRI 2023
Image/JPG (2,1 Mb)PDF (400 kb)
Soal2 UN + SBMPTN
PDF(3,5 Mb)ZIP(1,5 Mb)
"Terobosan Baru"
Untuk Meningkatkan
Pendapatan, Kualitas Pendidikan dan Sumber Daya PTS

PDF(6 Mb)Image/JPG(16 Mb)

http://kpt.co.id
CARA Meningkatkan
Kualitas Pendidikan, Sumber Daya dan Pendapatan PTS

PT. Gilland Ganesha
Membutuhkan Segera

  • Design Grafis
  • Senior Programmer

Seluruh Info di :
Kesempatan karir

155 Jenis / Ras Kucing di Dunia

Tanda kucing hamil, kolostrum susu yang penting, dsb.

Twitter Kuliah Karyawan

Tautan Tambahan
silakan klik
Ensiklopedia Online

dharma-andigha.web.id  |  stih-dharmaandigha.web.id  |  p2k.uks.ac.id  |  suyanto.web.id  |  wiki-indonesia.web.id  |  duniakicau.web.id  |  unkris.my.id  |  kuliah-murah.web.id  |  mmunkris.ac.id  |  ftui.web.id  |  p2k.itsb.ac.id